Giải bài tập

Giải Bài 42, 43, 7.1, 7.2 trang 107 SBT Toán 9 tập 2: Cho đường tròn tâm O bán kính R và hai dây AB, CD bất kì… Chứng minh IJ song song với AB

Bài 7. Tứ giác nội tiếp – SBT Toán lớp 9: Giải bài 42, 43, 7.1, 7.2 trang 107 Sách bài tập Toán 9 tập 2. Câu 42: Cho ba đường tròn cùng đi qua một điểm P. Gọi các giao điểm khác P của hai trong ba đường tròn đó là A, B, C;  Cho đường tròn tâm O bán kính R và hai dây AB, CD bất kì. Gọi M là điểm chính giữa của cung nhỏ AB. Gọi E và F tương ứng là giao điểm của MC, MD với dây AB. Gọi I và J tương ứng là giao điểm của DE, CF với đường tròn (O). Chứng minh IJ song song với AB…

Câu 42: Cho ba đường tròn cùng đi qua một điểm P. Gọi các giao điểm khác P của hai trong ba đường tròn đó là A, B, C. Từ một điểm D (khác điểm P) trên đường tròn (PBC) kẻ các tia DB, DC cắt các đường tròn (PAB) và (PAC) lần lượt tại M, N. Chứng minh ba điểm M, A, N thẳng hàng.

Bạn đang xem: Giải Bài 42, 43, 7.1, 7.2 trang 107 SBT Toán 9 tập 2: Cho đường tròn tâm O bán kính R và hai dây AB, CD bất kì… Chứng minh IJ song song với AB

Gọi ba đường tròn tâm O1, O2, O3

(O1) cắt (O2) tại A; (O1) cắt (O3) tại B.

(O2) cắt(O3) tại C. Suy ra D là điểm nằm trên đường tròn (O3).

BD cắt (O1) tại M, DC cắt (O2) tại N.

Nối PA, PB, PC; MA, NA.

Ta có tứ giác APBM  nội  tiếp trong đường tròn (O1).

\(\widehat {MAP} + \widehat {MBP} = 180^\circ \) (tính chất tứ giác  nội tiếp)

\(\widehat {MBP} + \widehat {PBD} = 180^\circ \) (kề bù)

Suy ra: \(\widehat {MAP} = \widehat {PBD}\)                               (1)

Ta có: Tứ giác APCN nội tiếp trong đường tròn (O2)

\(\widehat {NAP} + \widehat {NCP} = 180^\circ \) (tính chất tứ giác nội tiếp)

\(\widehat {NCP} + \widehat {PCD} = 180^\circ \) (kề bù)

Suy ra: \(\widehat {NAP} = \widehat {PCD}\)                               (2)

 Tứ giác BPCD nội tiếp trong đường tròn (O3)

\( \Rightarrow \widehat {PBD} + \widehat {PCD} = 180^\circ \) (tính chất tứ giác nội tiếp) (3)

Từ (1), (2) và (3) suy ra: \(\widehat {MAP} + \widehat {NAP} = 180^\circ \)

Vậy ba điểm M, A, N thẳng hàng.


Câu 43: Cho hai đoạn thẳng AC và BD cắt nhau tại E. Biết \(AE.EC = BE.ED\). Chứng minh bốn điểm A, B, C, D cùng nằm trên một đường tròn.

AE. EC =BE. ED (gt)

\( \Rightarrow {{AE} \over {ED}} = {{BE} \over {EC}}\)

Xét ∆AEB và ∆DEC:

\({{AE} \over {ED}} = {{BE} \over {EC}}\)

\(\widehat {AEB} = \widehat {DEC}\) (đối đỉnh)

Suy ra: ∆AEB đồng dạng ∆DEC (c.g.c)

\( \Rightarrow \widehat {BAE} = \widehat {CDE}\) hay \(\widehat {BAC} = \widehat {CDB}\)

A và D nhìn đoạn BC cố định dưới một góc bằng nhau nên A và D nằm trên một cung chứa góc vẽ trên BC hay 4 điểm A,B, C, D nằm trên một đường tròn.


Câu 7.1: Cho tam giác ABC có ba góc nhọn. Vẽ các đường cao AI, BK, CL của tam giác ấy. Gọi H là giao điểm của các đường cao vừa vẽ.

a) Chỉ ra các tứ giác nội tiếp có đỉnh lấy trong số các điểm A, B, C, H, I, K, L

b) Chứng minh \(\widehat {LBH},\widehat {LIH},\widehat {KIH}\) và \(\widehat {KCH}\) là 4 góc bằng nhau.

c) Chứng minh KB là tia phân giác của \(\widehat {LKI}\).

Vì ∆ABC là tam giác nhọn nên ba đường cao cắt nhau tại điểm H nằm trong tam giác ABC.

a) Tứ giác AKHL có \(\widehat {AKH} + \widehat {ALH} = 90^\circ  + 90^\circ  = 180^\circ \)

Tứ giác AKHL nội tiếp.

Tứ giác BIHL có \(\widehat {BIH} + \widehat {BLH} = 90^\circ  + 90^\circ  = 180^\circ \)

Tứ giác BIHL nội tiếp.

Tứ giác CIHK có \(\widehat {CIH} + \widehat {CKH} = 90^\circ  + 90^\circ  = 180^\circ \)

Tứ giác CIHK nội tiếp.

Tứ giác ABIK có \(\widehat {AKB} = 90^\circ;\widehat {AIB} = 90^\circ \)

K và I nhìn đoạn AB dưới một góc vuông nên tứ giác ABIK nội tiếp. Tứ giác BCKL có \(\widehat {BKC} = 90^\circ;\widehat {BLC} = 90^\circ \)

K và L nhìn đoạn BC dưới một góc vuông nên tứ giác BCKL nội tiếp.

Tứ giác ACIL có \(\widehat {AIC} = 90^\circ;\widehat {ALC} = 90^\circ \)

I và L nhìn đoạn AC dưới một góc vuông nên tứ giác ACIL nội tiếp.

b) Tứ giác BIHL nội tiếp.

\( \Rightarrow \widehat {LBH} = \widehat {LIH}\) (2 góc nội tiếp cùng chắn cung nhỏ \(\overparen{LH}\))           (1)

Tứ giác CIHK nội tiếp.

\( \Rightarrow \widehat {HIK} = \widehat {HCK}\) (2 góc nội tiếp cùng chắn cung nhỏ \(\overparen{HK}\))         (2)

Tứ giác BCKL nội tiếp.

\( \Rightarrow \widehat {LBK} = \widehat {LCK}\) (2 góc nội tiếp cùng chắn cung nhỏ \(\overparen{LK}\)) hay \(\widehat {LBH} = \widehat {HCK}\)                                                                          (3)

Từ (1), (2) và (3) suy ra: \(\widehat {LKH} = \widehat {HKI}\). Vậy KB là tia phân giác của \(\widehat {LKI}.\)


Câu 7.2: Cho đường tròn tâm O bán kính R và hai dây AB, CD bất kì. Gọi M là điểm chính giữa của cung nhỏ AB. Gọi E và F tương ứng là giao điểm của MC, MD với dây AB. Gọi I và J tương ứng là giao điểm của DE, CF với đường tròn (O). Chứng minh IJ song song với AB.

M là điểm chính giữa của cung nhỏ \(\overparen{AB}\).

\(\overparen{MA}\) = \(\overparen{MB}\)

\(\widehat {AEC} = {1 \over 2}\) (sđ\(\overparen{AC}\) +sđ \(\overparen{MB}\)) (góc có đỉnh ở trong đường tròn)

\(\widehat {CDM} = {1 \over 2}\) sđ\(\overparen{MAC}\) (tính chất góc nội tiếp) hay \(\widehat {CDF} = {1 \over 2}\) sđ\(\overparen{MA}\) + sđ\(\overparen{AC}\)

Suy ra: \(\widehat {AEC} = \widehat {CDF}\)

\(\widehat {AEC} + \widehat {{\rm{CEF}}} = 180^\circ \) (hai góc kề bù)

Suy ra: \(\widehat {CDF} + \widehat {{\rm{CEF}}} = 180^\circ \) nên tứ giác CDFE nội tiếp

\( \Rightarrow \widehat {CDE} = \widehat {CFE}\) (2 góc nội tiếp cùng chắn cung nhỏ \(\overparen{CE}\)) hay \(\widehat {CDI} = \widehat {CFE}\)

Trong đường tròn (O) ta có:

\(\widehat {CDI} = \widehat {CJI}\) (2 góc nội tiếp cùng chắn cung nhỏ \(\overparen{CAI}\))

Suy ra: \(\widehat {CJI} = \widehat {CFE}\)

\( \Rightarrow \) IJ // AB (vì có cặp góc ở vị trí đồng tâm bằng nhau)

Đăng bởi: Monica.vn

Chuyên mục: Giải bài tập

[toggle title=”Xem thêm Bài 42, 43, 7.1, 7.2 trang 107 SBT Toán 9 tập 2: Cho đường tròn tâm O bán kính R và hai dây AB, CD bất kì… Chứng minh IJ song song với AB” state=”close”]Bài 7. Tứ giác nội tiếp – SBT Toán lớp 9: Giải bài 42, 43, 7.1, 7.2 trang 107 Sách bài tập Toán 9 tập 2. Câu 42: Cho ba đường tròn cùng đi qua một điểm P. Gọi các giao điểm khác P của hai trong ba đường tròn đó là A, B, C;  Cho đường tròn tâm O bán kính R và hai dây AB, CD bất kì. Gọi M là điểm chính giữa của cung nhỏ AB. Gọi E và F tương ứng là giao điểm của MC, MD với dây AB. Gọi I và J tương ứng là giao điểm của DE, CF với đường tròn (O). Chứng minh IJ song song với AB…

Câu 42: Cho ba đường tròn cùng đi qua một điểm P. Gọi các giao điểm khác P của hai trong ba đường tròn đó là A, B, C. Từ một điểm D (khác điểm P) trên đường tròn (PBC) kẻ các tia DB, DC cắt các đường tròn (PAB) và (PAC) lần lượt tại M, N. Chứng minh ba điểm M, A, N thẳng hàng.

Gọi ba đường tròn tâm O1, O2, O3

(O1) cắt (O2) tại A; (O1) cắt (O3) tại B.

(O2) cắt(O3) tại C. Suy ra D là điểm nằm trên đường tròn (O3).

BD cắt (O1) tại M, DC cắt (O2) tại N.

Nối PA, PB, PC; MA, NA.

Ta có tứ giác APBM  nội  tiếp trong đường tròn (O1).

\(\widehat {MAP} + \widehat {MBP} = 180^\circ \) (tính chất tứ giác  nội tiếp)

\(\widehat {MBP} + \widehat {PBD} = 180^\circ \) (kề bù)

Suy ra: \(\widehat {MAP} = \widehat {PBD}\)                               (1)

Ta có: Tứ giác APCN nội tiếp trong đường tròn (O2)

\(\widehat {NAP} + \widehat {NCP} = 180^\circ \) (tính chất tứ giác nội tiếp)

\(\widehat {NCP} + \widehat {PCD} = 180^\circ \) (kề bù)

Suy ra: \(\widehat {NAP} = \widehat {PCD}\)                               (2)

 Tứ giác BPCD nội tiếp trong đường tròn (O3)

\( \Rightarrow \widehat {PBD} + \widehat {PCD} = 180^\circ \) (tính chất tứ giác nội tiếp) (3)

Từ (1), (2) và (3) suy ra: \(\widehat {MAP} + \widehat {NAP} = 180^\circ \)

Vậy ba điểm M, A, N thẳng hàng.


Câu 43: Cho hai đoạn thẳng AC và BD cắt nhau tại E. Biết \(AE.EC = BE.ED\). Chứng minh bốn điểm A, B, C, D cùng nằm trên một đường tròn.

AE. EC =BE. ED (gt)

\( \Rightarrow {{AE} \over {ED}} = {{BE} \over {EC}}\)

Xét ∆AEB và ∆DEC:

\({{AE} \over {ED}} = {{BE} \over {EC}}\)

\(\widehat {AEB} = \widehat {DEC}\) (đối đỉnh)

Suy ra: ∆AEB đồng dạng ∆DEC (c.g.c)

\( \Rightarrow \widehat {BAE} = \widehat {CDE}\) hay \(\widehat {BAC} = \widehat {CDB}\)

A và D nhìn đoạn BC cố định dưới một góc bằng nhau nên A và D nằm trên một cung chứa góc vẽ trên BC hay 4 điểm A,B, C, D nằm trên một đường tròn.


Câu 7.1: Cho tam giác ABC có ba góc nhọn. Vẽ các đường cao AI, BK, CL của tam giác ấy. Gọi H là giao điểm của các đường cao vừa vẽ.

a) Chỉ ra các tứ giác nội tiếp có đỉnh lấy trong số các điểm A, B, C, H, I, K, L

b) Chứng minh \(\widehat {LBH},\widehat {LIH},\widehat {KIH}\) và \(\widehat {KCH}\) là 4 góc bằng nhau.

c) Chứng minh KB là tia phân giác của \(\widehat {LKI}\).

Vì ∆ABC là tam giác nhọn nên ba đường cao cắt nhau tại điểm H nằm trong tam giác ABC.

a) Tứ giác AKHL có \(\widehat {AKH} + \widehat {ALH} = 90^\circ  + 90^\circ  = 180^\circ \)

Tứ giác AKHL nội tiếp.

Tứ giác BIHL có \(\widehat {BIH} + \widehat {BLH} = 90^\circ  + 90^\circ  = 180^\circ \)

Tứ giác BIHL nội tiếp.

Tứ giác CIHK có \(\widehat {CIH} + \widehat {CKH} = 90^\circ  + 90^\circ  = 180^\circ \)

Tứ giác CIHK nội tiếp.

Tứ giác ABIK có \(\widehat {AKB} = 90^\circ;\widehat {AIB} = 90^\circ \)

K và I nhìn đoạn AB dưới một góc vuông nên tứ giác ABIK nội tiếp. Tứ giác BCKL có \(\widehat {BKC} = 90^\circ;\widehat {BLC} = 90^\circ \)

K và L nhìn đoạn BC dưới một góc vuông nên tứ giác BCKL nội tiếp.

Tứ giác ACIL có \(\widehat {AIC} = 90^\circ;\widehat {ALC} = 90^\circ \)

I và L nhìn đoạn AC dưới một góc vuông nên tứ giác ACIL nội tiếp.

b) Tứ giác BIHL nội tiếp.

\( \Rightarrow \widehat {LBH} = \widehat {LIH}\) (2 góc nội tiếp cùng chắn cung nhỏ \(\overparen{LH}\))           (1)

Tứ giác CIHK nội tiếp.

\( \Rightarrow \widehat {HIK} = \widehat {HCK}\) (2 góc nội tiếp cùng chắn cung nhỏ \(\overparen{HK}\))         (2)

Tứ giác BCKL nội tiếp.

\( \Rightarrow \widehat {LBK} = \widehat {LCK}\) (2 góc nội tiếp cùng chắn cung nhỏ \(\overparen{LK}\)) hay \(\widehat {LBH} = \widehat {HCK}\)                                                                          (3)

Từ (1), (2) và (3) suy ra: \(\widehat {LKH} = \widehat {HKI}\). Vậy KB là tia phân giác của \(\widehat {LKI}.\)


Câu 7.2: Cho đường tròn tâm O bán kính R và hai dây AB, CD bất kì. Gọi M là điểm chính giữa của cung nhỏ AB. Gọi E và F tương ứng là giao điểm của MC, MD với dây AB. Gọi I và J tương ứng là giao điểm của DE, CF với đường tròn (O). Chứng minh IJ song song với AB.

M là điểm chính giữa của cung nhỏ \(\overparen{AB}\).

\(\overparen{MA}\) = \(\overparen{MB}\)

\(\widehat {AEC} = {1 \over 2}\) (sđ\(\overparen{AC}\) +sđ \(\overparen{MB}\)) (góc có đỉnh ở trong đường tròn)

\(\widehat {CDM} = {1 \over 2}\) sđ\(\overparen{MAC}\) (tính chất góc nội tiếp) hay \(\widehat {CDF} = {1 \over 2}\) sđ\(\overparen{MA}\) + sđ\(\overparen{AC}\)

Suy ra: \(\widehat {AEC} = \widehat {CDF}\)

\(\widehat {AEC} + \widehat {{\rm{CEF}}} = 180^\circ \) (hai góc kề bù)

Suy ra: \(\widehat {CDF} + \widehat {{\rm{CEF}}} = 180^\circ \) nên tứ giác CDFE nội tiếp

\( \Rightarrow \widehat {CDE} = \widehat {CFE}\) (2 góc nội tiếp cùng chắn cung nhỏ \(\overparen{CE}\)) hay \(\widehat {CDI} = \widehat {CFE}\)

Trong đường tròn (O) ta có:

\(\widehat {CDI} = \widehat {CJI}\) (2 góc nội tiếp cùng chắn cung nhỏ \(\overparen{CAI}\))

Suy ra: \(\widehat {CJI} = \widehat {CFE}\)

\( \Rightarrow \) IJ // AB (vì có cặp góc ở vị trí đồng tâm bằng nhau)

[/toggle]

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!