Giải bài tập

Giải Bài 9, 10, 11, 12 trang 147 Sách Giải tích 12: Ôn tập cuối năm

Ôn tập cuối năm. Giải bài 9, 10, 11, 12 trang 147 SGK Giải tích 12.  Giải các phương trình sau; Tính các tích phân sau bằng phương pháp tính tích phân từng phần

Bài 9: Giải các phương trình sau:

a) \({13^{2x + 1}} – {13^x} – 12 = 0\)

Bạn đang xem: Giải Bài 9, 10, 11, 12 trang 147 Sách Giải tích 12: Ôn tập cuối năm

b) \(({3^x} + {\rm{ }}{2^x})({3^x} + {\rm{ }}{3.2^x}){\rm{ }} = {\rm{ }}{8.6^x}\)

c) \({\log _{\sqrt 3 }}(x – 2).{\log _5}x = 2{\log _3}(x – 2)\)

d) \(log_2^2x{\rm{ }}-{\rm{ }}5log_2x{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}0\)

 a) Đặt  \(t = 13^x > 0\) ta được phương trình:

\(13t^2 – t – 12 = 0  ⇔ (t – 1)(13t + 12) = 0\)

\(⇔ t = 1  ⇔ 13^x = 1  ⇔ x = 0\)

b)

Chia cả hai vế phương trình cho \(9^x\) ta được phương trình tương đương

 \((1 + {({2 \over 3})^x})(1 + 3.{({2 \over 3})^x}) = 8.{({2 \over 3})^x}\)

Đặt \(t = {({2 \over 3})^x} (t > 0)\) , ta được phương trình:

\((1 + t)(1 + 3t) = 8t ⇔ 3t^2– 4t + 1 = 0 ⇔ \)\(t \in \left\{ {{1 \over 3},1} \right\}\)

Với \(t = {1 \over 3}\) ta được nghiệm \(x = {\log _{{2 \over 3}}}{1 \over 3}\)

Với \(t = 1\) ta được nghiệm \(x = 0\)

c) Điều kiện: \(x > 2\)

\(\eqalign{
& \Leftrightarrow 2lo{g_3}(x – 2).lo{g_5}x = 2lo{g_3}(x – 2) \cr
& \Leftrightarrow 2lo{g_3}(x – 2)({\log _5}x – 1) = 0 \cr} \)

  \(\Leftrightarrow\left[ \matrix{{\log _3}(x – 2) = 0 \hfill \cr lo{g_5}x = 1 \hfill \cr}  \right. \Leftrightarrow \left[ \matrix{x = 3 \hfill \cr x = 5 \hfill \cr}  \right.\)

 d) Điều kiện: \(x > 0\)

\(\eqalign{
& \log _2^2x – 5{\log _2}x + 6 = 0 \cr
& \Leftrightarrow ({\log _2}x – 2)({\log _2}x – 3) = 0 \cr
& \Leftrightarrow \left[ \matrix{
{\log _2}x = 2 \hfill \cr
{\log _2}x = 3 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 4 \hfill \cr
x = 8 \hfill \cr} \right. \cr} \)


Bài 10: Giải các bất phương trình sau

a) \({{{2^x}} \over {{3^x} – {2^x}}} \le 2\)

b) \({({1 \over 2})^{{{\log }_2}({x^2} – 1)}} > 1\)

c) \({\log ^2}x + 3\log x \ge 4\)

d) \({{1 – {{\log }_4}x} \over {1 + {{\log }_2}x}} \le {1 \over 4}\)

 a) Ta có:

 \({{{2^x}} \over {{3^x} – {2^x}}} \le 2 \Leftrightarrow {1 \over {{{({3 \over 2})}^x} – 1}} \le 2\)

Đặt \(t = {({3 \over 2})^2}(t > 0)\) , bất phương trình trở thành:

\(\eqalign{
& {1 \over {t – 1}} \le 2 \Leftrightarrow {1 \over {t – 1}} – 2 \le 0 \Leftrightarrow {{ – 2t + 3} \over {t – 1}} \le 0 \cr
& \Leftrightarrow \left[ \matrix{
0 < t < 1 \hfill \cr
t \ge {3 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
{({3 \over 2})^x} < 1 \hfill \cr
{({3 \over 2})^2} \ge {3 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x < 0 \hfill \cr
x \ge 1 \hfill \cr} \right. \cr} \)

 b) Ta có:

\(\eqalign{
& {({1 \over 2})^{{{\log }_2}({x^2} – 1)}} > 1 \Leftrightarrow \left\{ \matrix{
{x^2} – 1 > 0 \hfill \cr
{\log _2}({x^2} – 1) < 0 \hfill \cr} \right. \cr
& \Leftrightarrow 0 < {x^2} – 1 < 1 \Leftrightarrow 1 < |x| < \sqrt 2 \cr
& \Leftrightarrow x \in ( – \sqrt 2 , – 1) \cup (1,\sqrt 2 ) \cr} \)

c) Điều kiện: \(x > 0\)

\(\eqalign{
& {\log ^2}x + 3\log x \ge 4 \Leftrightarrow (\log x + 4)(logx – 1) \ge 0 \cr
& \Leftrightarrow \left[ \matrix{
{\mathop{\rm logx}\nolimits} \ge 1 \hfill \cr
logx \le – 4 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x \ge 10 \hfill \cr
0 < x \le {10^{ – 4}} \hfill \cr} \right. \cr} \)

 d) Ta có:

\(\eqalign{
& {{1 – {{\log }_4}x} \over {1 + {{\log }_2}x}} \le {1 \over 4} \Leftrightarrow {{1 – {{\log }_4}x} \over {1 + 2{{\log }_4}x}} \le {1 \over 4} \cr
& \Leftrightarrow {{3 – 6{{\log }_4}x} \over {1 + 2{{\log }_4}x}}\le0  \cr
& \Leftrightarrow \left[ \matrix{
{\log _4}x \le {{ – 1} \over 2} \hfill \cr
{\log _4}x \ge {1 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
0 < x < {1 \over 2} \hfill \cr
x \ge 2 \hfill \cr} \right. \cr} \)


Bài 11: Tính các tích phân sau bằng phương pháp tính tích phân từng phần

a) \(\int_1^{{e^4}} {\sqrt x } \ln xdx\)

b) \(\int_{{\pi  \over 6}}^{{\pi  \over 2}} {{{xdx} \over {{{\sin }^2}x}}} \)

c) \(\int_0^\pi  {(\pi  – x)\sin {\rm{x}}dx} \)

d) \(\int_{ – 1}^0 {(2x + 3){e^{ – x}}} dx\)

a)

\(\eqalign{
& \int_1^{{e^4}} {\sqrt x } \ln xdx = {\int_1^{{e^4}} {\ln xd({2 \over 3}} x^{{3 \over 2}}}) \cr
& = {2 \over 3}{x^{{3 \over 2}}}\ln x\left| {_1^{{e^4}}} \right. – \int\limits_1^{{e^4}} {{2 \over 3}} .{x^{{3 \over 2}}}.d{\mathop{\rm lnx}\nolimits} \cr
& = {8 \over 3}{e^6} – {2 \over 3}{x^{{1 \over 2}}}dx = {8 \over 3}{e^6} – {4 \over 9}{x^{{2 \over 3}}}\left| {_1^{{e^4}}} \right. = {{20} \over 9}{e^6} + {4 \over 9} \cr} \)

 b) Ta có:

\(\eqalign{
& \int_{{\pi \over 6}}^{{\pi \over 2}} {{{xdx} \over {{{\sin }^2}x}}} = \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {xd( – \cot x) = – x\cot x\left| {_{{\pi \over 6}}^{{\pi \over 2}}} \right.} + \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {\cot xdx} \cr
& = {{\pi \sqrt 3 } \over 6} + \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {{{d\sin x} \over {{\mathop{\rm s}\nolimits} {\rm{inx}}}}} = {{\pi \sqrt 3 } \over 6} + \ln |sinx|\left| {_{{\pi \over 6}}^{{\pi \over 2}}} \right. = {{\pi \sqrt 3 } \over 6} + \ln 2 \cr} \)

 c) Ta có:

\(\eqalign{
& \int_0^\pi {(\pi – x)\sin {\rm{x}}dx} = \int\limits_0^\pi {(\pi – x)d( – {\mathop{\rm cosx}\nolimits} )} \cr
& = – (\pi – x)cosx\left| {_0^\pi } \right. + \int\limits_0^\pi {{\mathop{\rm cosxd}\nolimits} (\pi – x) = \pi – s{\rm{inx}}\left| {_0^\pi } \right.} = \pi \cr} \)

 d) Ta có:

\(\eqalign{
& \int_{ – 1}^0 {(2x + 3){e^{ – x}}} dx = \int\limits_{ – 1}^0 {(2x + 3)d( – {e^{ – x}}} ) \cr
& = (2x + 3){e^{ – x}}\left| {_0^{ – 1}} \right. + \int\limits_{ – 1}^e {{e^{ – x}}} .2dx = e – 3 + 2{e^{ – x}}\left| {_0^1} \right. = 3e – 5 \cr} \)


Bài 12: Tính các tích phân sau bằng phương pháp đổi biến số

a) \(\int\limits_0^{{\pi  \over 24}} {\tan ({\pi  \over 4} – 4x)dx} \) (đặt \(u = \cos ({\pi  \over 3} – 4x)\) )

b) \(\int\limits_{{{\sqrt 3 } \over 5}}^{{3 \over 5}} {{{dx} \over {9 + 25{x^2}}}} \) (đặt \(x = {3 \over 5}\tan t\) )

c) \(\int\limits_0^{{\pi  \over 2}} {{{\sin }^3}} x{\cos ^4}xdx\) (đặt u = cos x)

d) \(\int\limits_{{{ – \pi } \over 4}}^{{\pi  \over 4}} {{{\sqrt {1 + \tan x} } \over {{{\cos }^2}x}}} dx\) (đặt \(u = \sqrt {1 + \tan x} \) )

a) Ta có:

Đặt \(u = \cos ({\pi  \over 3} – 4x)\) thì \(u’ = 4sin({\pi  \over 3} – 4x)\)

Khi \(x = 0\) thì \(u = {1 \over 2}\) ; khi \(x = {\pi  \over {24}} \Rightarrow u = {{\sqrt 3 } \over 2}\)

Khi đó:

\(\eqalign{
& \int\limits_0^{{\pi \over {24}}} {\tan ({\pi \over 3}} – 4x)dx = {1 \over 4}\int\limits_0^{{\pi \over {24}}} {{{d\cos ({\pi \over 3} – 4x)} \over {\cos ({\pi \over 3} – 4x)}}} \cr
& = {1 \over 4}\int\limits_{{1 \over 2}}^{{{\sqrt 3 } \over 2}} {{{du} \over u}} ={1 \over 4}\ln |u|\left| {_{{1 \over 2}}^{{{\sqrt 3 } \over 2}}} \right.= {1 \over 4}\ln \sqrt 3 \cr} \)

b)

Đặt

\(x = {3 \over 5}\tan t \Rightarrow \left\{ \matrix{
9 + 25{x^2} = 9(1 + {\tan ^2}t) \hfill \cr
dx = {3 \over 5}(1 + {\tan ^2}t) \hfill \cr} \right.\)

Đổi cận: \(x = {{\sqrt 3 } \over 5} \Rightarrow t = {\pi  \over 6};x = {3 \over 5} \Rightarrow t = {\pi  \over 4}\)

Do đó:

\(\int\limits_{{{\sqrt 3 } \over 5}}^{{3 \over 5}} {{{dx} \over {9 + 25{x^2}}}}  = \int\limits_{{\pi  \over 6}}^{{\pi  \over 4}} {{1 \over {15}}dt ={1 \over {15}}t\left| {_{{\pi  \over 6}}^{{\pi  \over 4}}} \right. {\pi  \over {180}}} \)

 c) Đặt \(t = cos x\) thì \(dt = -sin x dx\)

Khi \(x = 0 \Rightarrow t = 1;x = {\pi  \over 2} \Rightarrow t = 0\)

Do đó:

\(\eqalign{
& \int\limits_0^{{\pi \over 2}} {{{\sin }^3}x{{\cos }^4}xdx = \int\limits_1^0 { – (1 – {t^2}){t^4}} dt} \cr
& = – \int\limits_0^1 {({t^4} – {t^6})dt = – ({{{t^5}} \over 5}} – {{{t^7}} \over 7})\left| {_0^1} \right. = {2 \over {35}} \cr} \)

 d) Đặt \(u = \sqrt {1 + \tan x}  \Rightarrow {t^2} = 1 + \tan x \Rightarrow 2tdt = {{dx} \over {{{\cos }^2}x}}\)

Do đó:

\(\int\limits_{{{ – \pi } \over 4}}^{{\pi  \over 4}} {{{\sqrt {1 + \tan x} } \over {{{\cos }^2}x}}} dx = \int\limits_0^{\sqrt 2 } {2{t^2}dt = {2 \over 3}} {t^3}\left| {_0^{\sqrt 2 }} \right. = {{4\sqrt 2 } \over 3}\)

Đăng bởi: Monica.vn

Chuyên mục: Giải bài tập

[toggle title=”Xem thêm Bài 9, 10, 11, 12 trang 147 Sách Giải tích 12: Ôn tập cuối năm” state=”close”]Ôn tập cuối năm. Giải bài 9, 10, 11, 12 trang 147 SGK Giải tích 12.  Giải các phương trình sau; Tính các tích phân sau bằng phương pháp tính tích phân từng phần

Bài 9: Giải các phương trình sau:

a) \({13^{2x + 1}} – {13^x} – 12 = 0\)

b) \(({3^x} + {\rm{ }}{2^x})({3^x} + {\rm{ }}{3.2^x}){\rm{ }} = {\rm{ }}{8.6^x}\)

c) \({\log _{\sqrt 3 }}(x – 2).{\log _5}x = 2{\log _3}(x – 2)\)

d) \(log_2^2x{\rm{ }}-{\rm{ }}5log_2x{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}0\)

 a) Đặt  \(t = 13^x > 0\) ta được phương trình:

\(13t^2 – t – 12 = 0  ⇔ (t – 1)(13t + 12) = 0\)

\(⇔ t = 1  ⇔ 13^x = 1  ⇔ x = 0\)

b)

Chia cả hai vế phương trình cho \(9^x\) ta được phương trình tương đương

 \((1 + {({2 \over 3})^x})(1 + 3.{({2 \over 3})^x}) = 8.{({2 \over 3})^x}\)

Đặt \(t = {({2 \over 3})^x} (t > 0)\) , ta được phương trình:

\((1 + t)(1 + 3t) = 8t ⇔ 3t^2– 4t + 1 = 0 ⇔ \)\(t \in \left\{ {{1 \over 3},1} \right\}\)

Với \(t = {1 \over 3}\) ta được nghiệm \(x = {\log _{{2 \over 3}}}{1 \over 3}\)

Với \(t = 1\) ta được nghiệm \(x = 0\)

c) Điều kiện: \(x > 2\)

\(\eqalign{
& \Leftrightarrow 2lo{g_3}(x – 2).lo{g_5}x = 2lo{g_3}(x – 2) \cr
& \Leftrightarrow 2lo{g_3}(x – 2)({\log _5}x – 1) = 0 \cr} \)

  \(\Leftrightarrow\left[ \matrix{{\log _3}(x – 2) = 0 \hfill \cr lo{g_5}x = 1 \hfill \cr}  \right. \Leftrightarrow \left[ \matrix{x = 3 \hfill \cr x = 5 \hfill \cr}  \right.\)

 d) Điều kiện: \(x > 0\)

\(\eqalign{
& \log _2^2x – 5{\log _2}x + 6 = 0 \cr
& \Leftrightarrow ({\log _2}x – 2)({\log _2}x – 3) = 0 \cr
& \Leftrightarrow \left[ \matrix{
{\log _2}x = 2 \hfill \cr
{\log _2}x = 3 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 4 \hfill \cr
x = 8 \hfill \cr} \right. \cr} \)


Bài 10: Giải các bất phương trình sau

a) \({{{2^x}} \over {{3^x} – {2^x}}} \le 2\)

b) \({({1 \over 2})^{{{\log }_2}({x^2} – 1)}} > 1\)

c) \({\log ^2}x + 3\log x \ge 4\)

d) \({{1 – {{\log }_4}x} \over {1 + {{\log }_2}x}} \le {1 \over 4}\)

 a) Ta có:

 \({{{2^x}} \over {{3^x} – {2^x}}} \le 2 \Leftrightarrow {1 \over {{{({3 \over 2})}^x} – 1}} \le 2\)

Đặt \(t = {({3 \over 2})^2}(t > 0)\) , bất phương trình trở thành:

\(\eqalign{
& {1 \over {t – 1}} \le 2 \Leftrightarrow {1 \over {t – 1}} – 2 \le 0 \Leftrightarrow {{ – 2t + 3} \over {t – 1}} \le 0 \cr
& \Leftrightarrow \left[ \matrix{
0 < t < 1 \hfill \cr
t \ge {3 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
{({3 \over 2})^x} < 1 \hfill \cr
{({3 \over 2})^2} \ge {3 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x < 0 \hfill \cr
x \ge 1 \hfill \cr} \right. \cr} \)

 b) Ta có:

\(\eqalign{
& {({1 \over 2})^{{{\log }_2}({x^2} – 1)}} > 1 \Leftrightarrow \left\{ \matrix{
{x^2} – 1 > 0 \hfill \cr
{\log _2}({x^2} – 1) < 0 \hfill \cr} \right. \cr
& \Leftrightarrow 0 < {x^2} – 1 < 1 \Leftrightarrow 1 < |x| < \sqrt 2 \cr
& \Leftrightarrow x \in ( – \sqrt 2 , – 1) \cup (1,\sqrt 2 ) \cr} \)

c) Điều kiện: \(x > 0\)

\(\eqalign{
& {\log ^2}x + 3\log x \ge 4 \Leftrightarrow (\log x + 4)(logx – 1) \ge 0 \cr
& \Leftrightarrow \left[ \matrix{
{\mathop{\rm logx}\nolimits} \ge 1 \hfill \cr
logx \le – 4 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x \ge 10 \hfill \cr
0 < x \le {10^{ – 4}} \hfill \cr} \right. \cr} \)

 d) Ta có:

\(\eqalign{
& {{1 – {{\log }_4}x} \over {1 + {{\log }_2}x}} \le {1 \over 4} \Leftrightarrow {{1 – {{\log }_4}x} \over {1 + 2{{\log }_4}x}} \le {1 \over 4} \cr
& \Leftrightarrow {{3 – 6{{\log }_4}x} \over {1 + 2{{\log }_4}x}}\le0  \cr
& \Leftrightarrow \left[ \matrix{
{\log _4}x \le {{ – 1} \over 2} \hfill \cr
{\log _4}x \ge {1 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
0 < x < {1 \over 2} \hfill \cr
x \ge 2 \hfill \cr} \right. \cr} \)


Bài 11: Tính các tích phân sau bằng phương pháp tính tích phân từng phần

a) \(\int_1^{{e^4}} {\sqrt x } \ln xdx\)

b) \(\int_{{\pi  \over 6}}^{{\pi  \over 2}} {{{xdx} \over {{{\sin }^2}x}}} \)

c) \(\int_0^\pi  {(\pi  – x)\sin {\rm{x}}dx} \)

d) \(\int_{ – 1}^0 {(2x + 3){e^{ – x}}} dx\)

a)

\(\eqalign{
& \int_1^{{e^4}} {\sqrt x } \ln xdx = {\int_1^{{e^4}} {\ln xd({2 \over 3}} x^{{3 \over 2}}}) \cr
& = {2 \over 3}{x^{{3 \over 2}}}\ln x\left| {_1^{{e^4}}} \right. – \int\limits_1^{{e^4}} {{2 \over 3}} .{x^{{3 \over 2}}}.d{\mathop{\rm lnx}\nolimits} \cr
& = {8 \over 3}{e^6} – {2 \over 3}{x^{{1 \over 2}}}dx = {8 \over 3}{e^6} – {4 \over 9}{x^{{2 \over 3}}}\left| {_1^{{e^4}}} \right. = {{20} \over 9}{e^6} + {4 \over 9} \cr} \)

 b) Ta có:

\(\eqalign{
& \int_{{\pi \over 6}}^{{\pi \over 2}} {{{xdx} \over {{{\sin }^2}x}}} = \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {xd( – \cot x) = – x\cot x\left| {_{{\pi \over 6}}^{{\pi \over 2}}} \right.} + \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {\cot xdx} \cr
& = {{\pi \sqrt 3 } \over 6} + \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {{{d\sin x} \over {{\mathop{\rm s}\nolimits} {\rm{inx}}}}} = {{\pi \sqrt 3 } \over 6} + \ln |sinx|\left| {_{{\pi \over 6}}^{{\pi \over 2}}} \right. = {{\pi \sqrt 3 } \over 6} + \ln 2 \cr} \)

 c) Ta có:

\(\eqalign{
& \int_0^\pi {(\pi – x)\sin {\rm{x}}dx} = \int\limits_0^\pi {(\pi – x)d( – {\mathop{\rm cosx}\nolimits} )} \cr
& = – (\pi – x)cosx\left| {_0^\pi } \right. + \int\limits_0^\pi {{\mathop{\rm cosxd}\nolimits} (\pi – x) = \pi – s{\rm{inx}}\left| {_0^\pi } \right.} = \pi \cr} \)

 d) Ta có:

\(\eqalign{
& \int_{ – 1}^0 {(2x + 3){e^{ – x}}} dx = \int\limits_{ – 1}^0 {(2x + 3)d( – {e^{ – x}}} ) \cr
& = (2x + 3){e^{ – x}}\left| {_0^{ – 1}} \right. + \int\limits_{ – 1}^e {{e^{ – x}}} .2dx = e – 3 + 2{e^{ – x}}\left| {_0^1} \right. = 3e – 5 \cr} \)


Bài 12: Tính các tích phân sau bằng phương pháp đổi biến số

a) \(\int\limits_0^{{\pi  \over 24}} {\tan ({\pi  \over 4} – 4x)dx} \) (đặt \(u = \cos ({\pi  \over 3} – 4x)\) )

b) \(\int\limits_{{{\sqrt 3 } \over 5}}^{{3 \over 5}} {{{dx} \over {9 + 25{x^2}}}} \) (đặt \(x = {3 \over 5}\tan t\) )

c) \(\int\limits_0^{{\pi  \over 2}} {{{\sin }^3}} x{\cos ^4}xdx\) (đặt u = cos x)

d) \(\int\limits_{{{ – \pi } \over 4}}^{{\pi  \over 4}} {{{\sqrt {1 + \tan x} } \over {{{\cos }^2}x}}} dx\) (đặt \(u = \sqrt {1 + \tan x} \) )

a) Ta có:

Đặt \(u = \cos ({\pi  \over 3} – 4x)\) thì \(u’ = 4sin({\pi  \over 3} – 4x)\)

Khi \(x = 0\) thì \(u = {1 \over 2}\) ; khi \(x = {\pi  \over {24}} \Rightarrow u = {{\sqrt 3 } \over 2}\)

Khi đó:

\(\eqalign{
& \int\limits_0^{{\pi \over {24}}} {\tan ({\pi \over 3}} – 4x)dx = {1 \over 4}\int\limits_0^{{\pi \over {24}}} {{{d\cos ({\pi \over 3} – 4x)} \over {\cos ({\pi \over 3} – 4x)}}} \cr
& = {1 \over 4}\int\limits_{{1 \over 2}}^{{{\sqrt 3 } \over 2}} {{{du} \over u}} ={1 \over 4}\ln |u|\left| {_{{1 \over 2}}^{{{\sqrt 3 } \over 2}}} \right.= {1 \over 4}\ln \sqrt 3 \cr} \)

b)

Đặt

\(x = {3 \over 5}\tan t \Rightarrow \left\{ \matrix{
9 + 25{x^2} = 9(1 + {\tan ^2}t) \hfill \cr
dx = {3 \over 5}(1 + {\tan ^2}t) \hfill \cr} \right.\)

Đổi cận: \(x = {{\sqrt 3 } \over 5} \Rightarrow t = {\pi  \over 6};x = {3 \over 5} \Rightarrow t = {\pi  \over 4}\)

Do đó:

\(\int\limits_{{{\sqrt 3 } \over 5}}^{{3 \over 5}} {{{dx} \over {9 + 25{x^2}}}}  = \int\limits_{{\pi  \over 6}}^{{\pi  \over 4}} {{1 \over {15}}dt ={1 \over {15}}t\left| {_{{\pi  \over 6}}^{{\pi  \over 4}}} \right. {\pi  \over {180}}} \)

 c) Đặt \(t = cos x\) thì \(dt = -sin x dx\)

Khi \(x = 0 \Rightarrow t = 1;x = {\pi  \over 2} \Rightarrow t = 0\)

Do đó:

\(\eqalign{
& \int\limits_0^{{\pi \over 2}} {{{\sin }^3}x{{\cos }^4}xdx = \int\limits_1^0 { – (1 – {t^2}){t^4}} dt} \cr
& = – \int\limits_0^1 {({t^4} – {t^6})dt = – ({{{t^5}} \over 5}} – {{{t^7}} \over 7})\left| {_0^1} \right. = {2 \over {35}} \cr} \)

 d) Đặt \(u = \sqrt {1 + \tan x}  \Rightarrow {t^2} = 1 + \tan x \Rightarrow 2tdt = {{dx} \over {{{\cos }^2}x}}\)

Do đó:

\(\int\limits_{{{ – \pi } \over 4}}^{{\pi  \over 4}} {{{\sqrt {1 + \tan x} } \over {{{\cos }^2}x}}} dx = \int\limits_0^{\sqrt 2 } {2{t^2}dt = {2 \over 3}} {t^3}\left| {_0^{\sqrt 2 }} \right. = {{4\sqrt 2 } \over 3}\)

[/toggle]

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!