Giải bài tập

Giải Bài 8, 9, 10, 11 trang 52 Hình học 10 nâng cao: Tích vô hướng của hai vecto

 Bài 2 Tích vô hướng của hai vecto. Giải bài 8, 9, 10, 11 trang 52 SGK Hình học lớp 10 nâng cao. Chứng minh rằng điều kiện cần và đủ để; Chứng minh rằng bốn điểm \(A, B, C, D\) cùng nằm trên một đường tròn.

Bài 8: Chứng minh rằng điều kiện cần và đủ để tam giác \(ABC\) vuông tại \(A\) là \(\overrightarrow {BA} .\,\overrightarrow {BC}  = A{B^2}\).

Bạn đang xem: Giải Bài 8, 9, 10, 11 trang 52 Hình học 10 nâng cao: Tích vô hướng của hai vecto

Ta có \(\overrightarrow {BA} .\,\overrightarrow {BC}  = {\overrightarrow {BA} ^2}\,\, \Leftrightarrow \,\,\overrightarrow {BA} (\overrightarrow {BC}  – \overrightarrow {BA} ) = 0\)

\( \Leftrightarrow \overrightarrow {BA} .\,\overrightarrow {AC}  = 0\,\, \Leftrightarrow \,\,BA \bot AC\)

\( \Leftrightarrow \)  Tam giác \(ABC\) vuông tại \(A\).


Bài 9: Cho tam giác \(ABC\) với ba đường trung tuyến \(AD, BE, CF\). Chứng minh rằng

\(\overrightarrow {BC} .\overrightarrow {AD}  + \overrightarrow {CA} .\overrightarrow {BE}  + \overrightarrow {AB} .\overrightarrow {CF}  = 0\).

 

Ta có \(\overrightarrow {AD}  = {1 \over 2}(\overrightarrow {AB}  + \overrightarrow {AC} )\)

\(\eqalign{
& \overrightarrow {BE} = {1 \over 2}(\overrightarrow {BA} + \overrightarrow {BC} ) \cr
& \overrightarrow {CF} = {1 \over 2}(\overrightarrow {CA} + \overrightarrow {CB} ) \cr} \)

Do đó  \(\overrightarrow {BC} .\overrightarrow {AD}  + \overrightarrow {CA} .\overrightarrow {BE}  + \overrightarrow {AB} .\overrightarrow {CF} \)

\(\eqalign{
& = {1 \over 2}\overrightarrow {BC} (\overrightarrow {AB} + \overrightarrow {AC} ) + {1 \over 2}\overrightarrow {CA} (\overrightarrow {BA} + \overrightarrow {BC} ) + {1 \over 2}\overrightarrow {AB} (\overrightarrow {CA} + \overrightarrow {CB} ) \cr
& = {1 \over 2}(\overrightarrow {BC} \overrightarrow {AB} + \overrightarrow {BC} \overrightarrow {AC} + \overrightarrow {CA} \overrightarrow {BA} + \overrightarrow {CA} \overrightarrow {BC} + \overrightarrow {AB} \overrightarrow {CA} + \overrightarrow {AB} \overrightarrow {CB} )\cr
& = {1 \over 2}(\overrightarrow {BC} \overrightarrow {AB} + \overrightarrow {AB} \overrightarrow {CB} ) + {1 \over 2}(\overrightarrow {BC} \overrightarrow {AC} + \overrightarrow {CA} \overrightarrow {BC} ) + {1 \over 2}(\overrightarrow {CA} \overrightarrow {BA} + \overrightarrow {AB} \overrightarrow {CA} ) = 0 \cr} \)

(điều phải chứng minh)


Bài 10: Cho hai điểm \(M, N\) nằm trên đường tròn đường kính \(AB = 2R\). Gọi \(I\) là giao điểm của hai đường thẳng \(AM, BN\).

a) Chứng minh rằng \(\overrightarrow {AM} .\overrightarrow {AI}  = \overrightarrow {AB} .\overrightarrow {AI} \,\,;\,\,\overrightarrow {BN} .\overrightarrow {BI}  = \overrightarrow {BA} .\overrightarrow {BI}.\)

b) Tính \(\overrightarrow {AM} .\overrightarrow {AI}  + \,\,\overrightarrow {BN} .\overrightarrow {BI} \) theo \(R\).

 

a) Ta có \(\overrightarrow {AM} .\,\overrightarrow {AI}  = (\overrightarrow {AB}  + \overrightarrow {BM} ).\,\overrightarrow {AI}  = \overrightarrow {AB} .\,\overrightarrow {AI}  + \overrightarrow {BM} .\,\overrightarrow {AI}  = \overrightarrow {AB} .\,\overrightarrow {AI} \) ( vì \(\overrightarrow {BM} .\,\overrightarrow {AI}  = 0\) ).

Tương tự, \(\overrightarrow {BN} .\,\overrightarrow {BI}  = (\overrightarrow {BA}  + \,\overrightarrow {AN} ).\,\overrightarrow {BI}  = \overrightarrow {BA} .\,\overrightarrow {BI}  + \overrightarrow {AN} .\,\overrightarrow {BI}  = \overrightarrow {BA} .\,\overrightarrow {BI} \) ( vì \(\overrightarrow {AN} .\,\overrightarrow {BI}  = 0\) ).

b)  Theo câu a), \(\overrightarrow {AM} .\overrightarrow {AI}  + \overrightarrow {BN} .\overrightarrow {BI}  = \overrightarrow {AB} .\overrightarrow {AI} \, + \overrightarrow {BA} .\overrightarrow {BI} \)

\( = \overrightarrow {AB} (\overrightarrow {AI}  – \overrightarrow {BI} ) = \overrightarrow {AB} .\,\overrightarrow {AB}  = A{B^2} = 4{R^2}.\)


Bài 11: Cho hai đường thẳng \(a\) và \(b\) cắt nhau tại \(M\). Trên \(a\) có hai điểm \(A\) và \(B\), trên \(b\) có hai điểm \(C\) và \(D\) đều khác \(M\) sao cho \(\overrightarrow {MA} .\overrightarrow {MB}  = \overrightarrow {MC} .\overrightarrow {MD} \,\,\). Chứng minh rằng bốn điểm \(A, B, C, D\) cùng nằm trên một đường tròn.

 

Gọi \((O)\) là đường tròn ngoại tiếp tam giác \(ABC\). Gọi \(D’\) là giao điểm của \(b\) với \((O)\) ( \({D’} \ne C\)).

Theo giả thiết ta có \(\overrightarrow {MA} .\overrightarrow {MB}  = \overrightarrow {MC} .\overrightarrow {M{D’}} \,\,\)

\(\eqalign{
& \Rightarrow \,\,\overrightarrow {MC} .\overrightarrow {MD} = \overrightarrow {MC} .\overrightarrow {M{D’}} \cr
& \Rightarrow \,\,\overrightarrow {MC} (\overrightarrow {MD} – \overrightarrow {M{D’}} ) = 0 \cr
& \Rightarrow \,\,\overrightarrow {MC} .\,\overrightarrow {{D’}D} = 0\,\,\,\, \cr} \)

\(\Rightarrow \,\overrightarrow {{D’}D}  = 0\)  (Do \(M, C, D, D’\) cùng thuộc đường thẳng b)

\( \Rightarrow D \equiv {D’}\).

Vậy bốn điểm \(A, B, C, D\) cùng nằm trên một đường tròn.

Đăng bởi: Monica.vn

Chuyên mục: Giải bài tập

[toggle title=”Xem thêm Bài 8, 9, 10, 11 trang 52 Hình học 10 nâng cao: Tích vô hướng của hai vecto” state=”close”] Bài 2 Tích vô hướng của hai vecto. Giải bài 8, 9, 10, 11 trang 52 SGK Hình học lớp 10 nâng cao. Chứng minh rằng điều kiện cần và đủ để; Chứng minh rằng bốn điểm \(A, B, C, D\) cùng nằm trên một đường tròn.

Bài 8: Chứng minh rằng điều kiện cần và đủ để tam giác \(ABC\) vuông tại \(A\) là \(\overrightarrow {BA} .\,\overrightarrow {BC}  = A{B^2}\).

Ta có \(\overrightarrow {BA} .\,\overrightarrow {BC}  = {\overrightarrow {BA} ^2}\,\, \Leftrightarrow \,\,\overrightarrow {BA} (\overrightarrow {BC}  – \overrightarrow {BA} ) = 0\)

\( \Leftrightarrow \overrightarrow {BA} .\,\overrightarrow {AC}  = 0\,\, \Leftrightarrow \,\,BA \bot AC\)

\( \Leftrightarrow \)  Tam giác \(ABC\) vuông tại \(A\).


Bài 9: Cho tam giác \(ABC\) với ba đường trung tuyến \(AD, BE, CF\). Chứng minh rằng

\(\overrightarrow {BC} .\overrightarrow {AD}  + \overrightarrow {CA} .\overrightarrow {BE}  + \overrightarrow {AB} .\overrightarrow {CF}  = 0\).

 

Ta có \(\overrightarrow {AD}  = {1 \over 2}(\overrightarrow {AB}  + \overrightarrow {AC} )\)

\(\eqalign{
& \overrightarrow {BE} = {1 \over 2}(\overrightarrow {BA} + \overrightarrow {BC} ) \cr
& \overrightarrow {CF} = {1 \over 2}(\overrightarrow {CA} + \overrightarrow {CB} ) \cr} \)

Do đó  \(\overrightarrow {BC} .\overrightarrow {AD}  + \overrightarrow {CA} .\overrightarrow {BE}  + \overrightarrow {AB} .\overrightarrow {CF} \)

\(\eqalign{
& = {1 \over 2}\overrightarrow {BC} (\overrightarrow {AB} + \overrightarrow {AC} ) + {1 \over 2}\overrightarrow {CA} (\overrightarrow {BA} + \overrightarrow {BC} ) + {1 \over 2}\overrightarrow {AB} (\overrightarrow {CA} + \overrightarrow {CB} ) \cr
& = {1 \over 2}(\overrightarrow {BC} \overrightarrow {AB} + \overrightarrow {BC} \overrightarrow {AC} + \overrightarrow {CA} \overrightarrow {BA} + \overrightarrow {CA} \overrightarrow {BC} + \overrightarrow {AB} \overrightarrow {CA} + \overrightarrow {AB} \overrightarrow {CB} )\cr
& = {1 \over 2}(\overrightarrow {BC} \overrightarrow {AB} + \overrightarrow {AB} \overrightarrow {CB} ) + {1 \over 2}(\overrightarrow {BC} \overrightarrow {AC} + \overrightarrow {CA} \overrightarrow {BC} ) + {1 \over 2}(\overrightarrow {CA} \overrightarrow {BA} + \overrightarrow {AB} \overrightarrow {CA} ) = 0 \cr} \)

(điều phải chứng minh)


Bài 10: Cho hai điểm \(M, N\) nằm trên đường tròn đường kính \(AB = 2R\). Gọi \(I\) là giao điểm của hai đường thẳng \(AM, BN\).

a) Chứng minh rằng \(\overrightarrow {AM} .\overrightarrow {AI}  = \overrightarrow {AB} .\overrightarrow {AI} \,\,;\,\,\overrightarrow {BN} .\overrightarrow {BI}  = \overrightarrow {BA} .\overrightarrow {BI}.\)

b) Tính \(\overrightarrow {AM} .\overrightarrow {AI}  + \,\,\overrightarrow {BN} .\overrightarrow {BI} \) theo \(R\).

 

a) Ta có \(\overrightarrow {AM} .\,\overrightarrow {AI}  = (\overrightarrow {AB}  + \overrightarrow {BM} ).\,\overrightarrow {AI}  = \overrightarrow {AB} .\,\overrightarrow {AI}  + \overrightarrow {BM} .\,\overrightarrow {AI}  = \overrightarrow {AB} .\,\overrightarrow {AI} \) ( vì \(\overrightarrow {BM} .\,\overrightarrow {AI}  = 0\) ).

Tương tự, \(\overrightarrow {BN} .\,\overrightarrow {BI}  = (\overrightarrow {BA}  + \,\overrightarrow {AN} ).\,\overrightarrow {BI}  = \overrightarrow {BA} .\,\overrightarrow {BI}  + \overrightarrow {AN} .\,\overrightarrow {BI}  = \overrightarrow {BA} .\,\overrightarrow {BI} \) ( vì \(\overrightarrow {AN} .\,\overrightarrow {BI}  = 0\) ).

b)  Theo câu a), \(\overrightarrow {AM} .\overrightarrow {AI}  + \overrightarrow {BN} .\overrightarrow {BI}  = \overrightarrow {AB} .\overrightarrow {AI} \, + \overrightarrow {BA} .\overrightarrow {BI} \)

\( = \overrightarrow {AB} (\overrightarrow {AI}  – \overrightarrow {BI} ) = \overrightarrow {AB} .\,\overrightarrow {AB}  = A{B^2} = 4{R^2}.\)


Bài 11: Cho hai đường thẳng \(a\) và \(b\) cắt nhau tại \(M\). Trên \(a\) có hai điểm \(A\) và \(B\), trên \(b\) có hai điểm \(C\) và \(D\) đều khác \(M\) sao cho \(\overrightarrow {MA} .\overrightarrow {MB}  = \overrightarrow {MC} .\overrightarrow {MD} \,\,\). Chứng minh rằng bốn điểm \(A, B, C, D\) cùng nằm trên một đường tròn.

 

Gọi \((O)\) là đường tròn ngoại tiếp tam giác \(ABC\). Gọi \(D’\) là giao điểm của \(b\) với \((O)\) ( \({D’} \ne C\)).

Theo giả thiết ta có \(\overrightarrow {MA} .\overrightarrow {MB}  = \overrightarrow {MC} .\overrightarrow {M{D’}} \,\,\)

\(\eqalign{
& \Rightarrow \,\,\overrightarrow {MC} .\overrightarrow {MD} = \overrightarrow {MC} .\overrightarrow {M{D’}} \cr
& \Rightarrow \,\,\overrightarrow {MC} (\overrightarrow {MD} – \overrightarrow {M{D’}} ) = 0 \cr
& \Rightarrow \,\,\overrightarrow {MC} .\,\overrightarrow {{D’}D} = 0\,\,\,\, \cr} \)

\(\Rightarrow \,\overrightarrow {{D’}D}  = 0\)  (Do \(M, C, D, D’\) cùng thuộc đường thẳng b)

\( \Rightarrow D \equiv {D’}\).

Vậy bốn điểm \(A, B, C, D\) cùng nằm trên một đường tròn.

[/toggle]

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!