Giải bài tập

Giải Bài 18, 19, 20 trang 17, 18 SGK Hình học 10 Nâng cao: Hiệu của hai vecto

 Bài 3 Hiệu của hai vecto. Giải bài 18, 19, 20 trang 17, 18 Sách giáo khoa Hình lớp 10 Nâng cao.  Chứng minh rằng…;  Cho sáu điểm \(A, B, C, D, E, F\). Chứng minh rằng

Bài 18: Cho hình bình hành \(ABCD\). Chứng minh rằng \(\overrightarrow {DA}  – \overrightarrow {DB}  + \overrightarrow {DC}  = \overrightarrow 0 \).

Bạn đang xem: Giải Bài 18, 19, 20 trang 17, 18 SGK Hình học 10 Nâng cao: Hiệu của hai vecto

Ta có  \(\overrightarrow {DA}  – \overrightarrow {DB}  = \overrightarrow {BA} \) mà \(\overrightarrow {BA}  = \overrightarrow {CD} \) suy ra \(\overrightarrow {DA}  – \overrightarrow {DB}  + \overrightarrow {DC}  = \overrightarrow {CD}  + \overrightarrow {DC}  = \overrightarrow 0 .\)


Bài 19: Chứng minh rằng \(\overrightarrow {AB}  = \overrightarrow {CD} \) khi và chỉ khi trung điểm của hai đoạn thẳng \(AD\) và \(BC\) trùng nhau.

Giả sử \(\overrightarrow {AB}  = \overrightarrow {CD} \) và \(M, N\) lần lượt là trung điểm của \(AD,BC\).

Ta có \(\overrightarrow {MA}  + \overrightarrow {MD}  = \overrightarrow 0 ,\,\overrightarrow {NB}  + \overrightarrow {NC}  = \overrightarrow 0 \) và \(\overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AB}  + \overrightarrow {BN} ,\,\overrightarrow {MN}  = \overrightarrow {MD}  + \overrightarrow {DC}  + \overrightarrow {CN} \) suy ra

\(\eqalign{
& 2\overrightarrow {MN} = \overrightarrow {MN} + \overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AB} + \overrightarrow {BN} + \overrightarrow {MD} + \overrightarrow {DC} + \overrightarrow {CN} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {\overrightarrow {MA} + \overrightarrow {MD} } \right) + \left( {\overrightarrow {BN} + \overrightarrow {CN} } \right) + \overrightarrow {AB} + \overrightarrow {DC} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {AB} – \overrightarrow {CD} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow 0 \cr} \)

Do đó, \(\overrightarrow {MN}  = \overrightarrow 0 \) , tức là \(M \equiv N\).

Vậy trung điểm của hai đoạn thẳng \(AD\) và \(BC\) trùng nhau.

Ngược lại, ta giả sử trung điểm của hai đoạn thẳng \(AD\) và \(BC\) trùng nhau, suy ra

 \(\overrightarrow {MA}  + \overrightarrow {MD}  = \overrightarrow 0 ,\,\overrightarrow {MB}  + \overrightarrow {MC}  = \overrightarrow 0 \)

Suy ra \(\overrightarrow {AB}  = \overrightarrow {AM}  + \overrightarrow {MB}  = \overrightarrow {CM}  + \overrightarrow {MD}  = \overrightarrow {CD} \).


Bài 20: Cho sáu điểm \(A, B, C, D, E, F\). Chứng minh rằng

\(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AE}  + \overrightarrow {BF}  + \overrightarrow {CD}  = \overrightarrow {AF}  + \overrightarrow {BD}  + \overrightarrow {CE} \).

Theo quy tắc ba điểm, ta có

\(\eqalign{
& \overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \left( {\overrightarrow {AE} + \overrightarrow {ED} } \right) + \left( {\overrightarrow {BF} + \overrightarrow {FE} } \right) + \left( {\overrightarrow {CD} + \overrightarrow {DF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} + \left( {\overrightarrow {FE} + \overrightarrow {ED} + \overrightarrow {DF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} + \left( {\overrightarrow {FD} + \overrightarrow {DF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} \cr} \)

Tương tự, ta cũng có

\(\eqalign{
& \overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \left( {\overrightarrow {AF} + \overrightarrow {FD} } \right) + \left( {\overrightarrow {BD} + \overrightarrow {DE} } \right) + \left( {\overrightarrow {CE} + \overrightarrow {EF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} + \left( {\overrightarrow {FD} + \overrightarrow {DE} + \overrightarrow {EF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} + \left( {\overrightarrow {FE} + \overrightarrow {EF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} \cr} \)

Vậy ta có \(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AE}  + \overrightarrow {BF}  + \overrightarrow {CD}  = \overrightarrow {AF}  + \overrightarrow {BD}  + \overrightarrow {CE} \)

Đăng bởi: Monica.vn

Chuyên mục: Giải bài tập

[toggle title=”Xem thêm Bài 18, 19, 20 trang 17, 18 SGK Hình học 10 Nâng cao: Hiệu của hai vecto” state=”close”] Bài 3 Hiệu của hai vecto. Giải bài 18, 19, 20 trang 17, 18 Sách giáo khoa Hình lớp 10 Nâng cao.  Chứng minh rằng…;  Cho sáu điểm \(A, B, C, D, E, F\). Chứng minh rằng

Bài 18: Cho hình bình hành \(ABCD\). Chứng minh rằng \(\overrightarrow {DA}  – \overrightarrow {DB}  + \overrightarrow {DC}  = \overrightarrow 0 \).

Ta có  \(\overrightarrow {DA}  – \overrightarrow {DB}  = \overrightarrow {BA} \) mà \(\overrightarrow {BA}  = \overrightarrow {CD} \) suy ra \(\overrightarrow {DA}  – \overrightarrow {DB}  + \overrightarrow {DC}  = \overrightarrow {CD}  + \overrightarrow {DC}  = \overrightarrow 0 .\)


Bài 19: Chứng minh rằng \(\overrightarrow {AB}  = \overrightarrow {CD} \) khi và chỉ khi trung điểm của hai đoạn thẳng \(AD\) và \(BC\) trùng nhau.

Giả sử \(\overrightarrow {AB}  = \overrightarrow {CD} \) và \(M, N\) lần lượt là trung điểm của \(AD,BC\).

Ta có \(\overrightarrow {MA}  + \overrightarrow {MD}  = \overrightarrow 0 ,\,\overrightarrow {NB}  + \overrightarrow {NC}  = \overrightarrow 0 \) và \(\overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AB}  + \overrightarrow {BN} ,\,\overrightarrow {MN}  = \overrightarrow {MD}  + \overrightarrow {DC}  + \overrightarrow {CN} \) suy ra

\(\eqalign{
& 2\overrightarrow {MN} = \overrightarrow {MN} + \overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AB} + \overrightarrow {BN} + \overrightarrow {MD} + \overrightarrow {DC} + \overrightarrow {CN} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {\overrightarrow {MA} + \overrightarrow {MD} } \right) + \left( {\overrightarrow {BN} + \overrightarrow {CN} } \right) + \overrightarrow {AB} + \overrightarrow {DC} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {AB} – \overrightarrow {CD} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow 0 \cr} \)

Do đó, \(\overrightarrow {MN}  = \overrightarrow 0 \) , tức là \(M \equiv N\).

Vậy trung điểm của hai đoạn thẳng \(AD\) và \(BC\) trùng nhau.

Ngược lại, ta giả sử trung điểm của hai đoạn thẳng \(AD\) và \(BC\) trùng nhau, suy ra

 \(\overrightarrow {MA}  + \overrightarrow {MD}  = \overrightarrow 0 ,\,\overrightarrow {MB}  + \overrightarrow {MC}  = \overrightarrow 0 \)

Suy ra \(\overrightarrow {AB}  = \overrightarrow {AM}  + \overrightarrow {MB}  = \overrightarrow {CM}  + \overrightarrow {MD}  = \overrightarrow {CD} \).


Bài 20: Cho sáu điểm \(A, B, C, D, E, F\). Chứng minh rằng

\(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AE}  + \overrightarrow {BF}  + \overrightarrow {CD}  = \overrightarrow {AF}  + \overrightarrow {BD}  + \overrightarrow {CE} \).

Theo quy tắc ba điểm, ta có

\(\eqalign{
& \overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \left( {\overrightarrow {AE} + \overrightarrow {ED} } \right) + \left( {\overrightarrow {BF} + \overrightarrow {FE} } \right) + \left( {\overrightarrow {CD} + \overrightarrow {DF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} + \left( {\overrightarrow {FE} + \overrightarrow {ED} + \overrightarrow {DF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} + \left( {\overrightarrow {FD} + \overrightarrow {DF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} \cr} \)

Tương tự, ta cũng có

\(\eqalign{
& \overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \left( {\overrightarrow {AF} + \overrightarrow {FD} } \right) + \left( {\overrightarrow {BD} + \overrightarrow {DE} } \right) + \left( {\overrightarrow {CE} + \overrightarrow {EF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} + \left( {\overrightarrow {FD} + \overrightarrow {DE} + \overrightarrow {EF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} + \left( {\overrightarrow {FE} + \overrightarrow {EF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} \cr} \)

Vậy ta có \(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AE}  + \overrightarrow {BF}  + \overrightarrow {CD}  = \overrightarrow {AF}  + \overrightarrow {BD}  + \overrightarrow {CE} \)

[/toggle]

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!